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Summary underlying complex traits. Compared with linkage stud-
ies, this approach has far greater power to detect genesAssociation studies are one of the major strategies for
of modest effect, such as those involved in the suscepti-identifying genetic factors underlying complex traits. In
bility to complex human diseases (Risch and Merikan-samples of related individuals, conventional statistical
gas 1996). Owing to increasing availability of candidateprocedures are not valid for testing association, and
genes for many diseases, this approach is likely to de-maximum likelihood (ML) methods have to be used,
velop in the future (Lander 1996).but they are computationally demanding and are not

Association studies rely on the direct identificationnecessarily robust to violations of their assumptions.
of variants predisposing to disease or on the linkageEstimating equations (EE) offer an alternative to ML
disequilibrium existing, at a populational level, betweenmethods, for estimating association parameters in corre-
measured markers and unknown functional variants atlated data. We studied through simulations the behavior
candidate loci. They are usually performed in samplesof EE in a large range of practical situations, including
of unrelated individuals, and, in that case, the estimatingsamples of nuclear families of varying sizes and mixtures
and testing of association parameters are straightfor-of related and unrelated individuals. For a quantitative
ward by use of conventional statistical procedures. Thephenotype, the power of the EE test was comparable to
major advantage of this approach lies in its simplicitythat of a conventional ML test and close to the power
and its flexibility, easily allowing investigation of gene-expected in a sample of unrelated individuals. For a
gene and gene-environment interactions that constitutebinary phenotype, the power of the EE test decreased
the underlying architecture of complex traits.with the degree of clustering, as did the power of the

Although use of unrelated individuals is a priori theML test. This result might be partly explained by a
most efficient way of studying the association betweenmodeling of the correlations between responses that is
measured markers and phenotype, in some situationsless efficient than that in the quantitative case. In small
one could be interested in using familial data for testingsamples (õ50 families), the variance of the EE associa-
association. For example, it is more and more frequenttion parameter tended to be underestimated, leading to
to combine populational and familial approaches—as,an inflation of the type I error. The heterogeneity of
for example, a case-control study and a sib-pair study—cluster size induced a slight loss of efficiency of the EE
in which the same candidate genes are investigated (Jeu-estimator, by comparison with balanced samples. The
nemaitre et al. 1992; Bonnardeaux et al. 1994; Lind-major advantages of the EE technique are its computa-
paintner et al. 1996). It would then be tempting to use alltional simplicity and its great flexibility, easily allowing
the available information for testing marker-phenotypeinvestigation of gene-gene and gene-environment inter-
association. Likewise, with increasing availability ofactions. It constitutes a powerful tool for testing geno-
family data sets, one may wish to screen data for possibletype-phenotype association in related individuals.
association between phenotype and candidate-gene
markers and to identify potentially relevant interactions,

Introduction before embarking on more time-consuming segregation/
linkage analysis. Last, the large-scale samples currentlyAssociation studies based on candidate genes are one
collected for linkage analysis (e.g., affected sib pairs)of the major strategies used to identify genetic factors
of complex diseases could also be used for association
analysis (Risch and Merikangas 1996). However, as far
as related individuals are concerned, conventional statis-Received November 15, 1996; accepted for publication April 23,
tical methods are no longer valid and may lead to incor-1997.
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their assumptions. This problem is crucial, since it is 1 nk matrix of p covariates. The EE approach (Liang
generally not possible to check the validity of these as- and Zeger 1986) requires no assumption about the joint
sumptions. distribution of the yki but assumes only that the marginal

The EE approach offers an alternative to ML meth- distribution of yki (i Å 1, . . . , nk) has a mean correctly
ods, for studying a genotype-phenotype association in specified by a known function, referred to as the ‘‘link
samples of related individuals. This technique was ini- function,’’ of a linear combination of the covariates xki

tially proposed, independently, by Godambe (1960) and with a vector of regression coefficients bt Å (b1 , . . . ,
Huber (1964). Liang and Zeger (1986) contributed to bp) to be estimated. A consistent estimate of b is obtained
popularization of this technique, through successful ap- by solving the following EE:
plication of it to longitudinal data analysis (for a review,
see Godambe 1991). The EE method is a general ap-

∑
K

kÅ1

Ìmt
k

Ìb Var(yk)01(yk 0 mk) Å 0 . (1)proach for estimating regression parameters for corre-
lated data that makes no distributional assumption, un-
like ML methods, but it only models the expectation

Provided that only the mean is correctly specified, the
of the marginal moments of the data as functions of

solution of equations (1) is such that K1/2(bO 0 b) is as-
covariates. The EE method is robust in the sense that

ymptotically normally distributed with mean 0 and co-
consistent estimates of regression parameters and their

variance matrix consistently estimated by
standard errors are obtained even though correlations
between responses are partially misspecified. As pointed
out by Zhao et al. (1992b), for the partly exponential V(bO ) Å KW01�∑

K

kÅ1

Ìmt
k

Ìb Var(yk)01(yk 0 mk)
family the proposed EE has a form identical to that of
the score-estimating equation, establishing an equiva-
lence between the EE and the ML approaches. In fact, EE 1 (yk 0 mk)tVar(yk)01 Ìmk

Ìb �W01 , (2)
encompasses ML, since the score-estimating equation
under ML is a particular case of EE, in which a specific
distribution is assumed.

whereThe EE technique has recently been introduced to hu-
man genetics, and several methods have been developed
for analyzing familial data (Liang and Beaty 1991; Zhao W Å K01 ∑

K

kÅ1

Ìmt
k

Ìb Var(yk)01 Ìmk

Ìb ,
et al. 1992a; Grove et al. 1993; Olson 1994a; Hsu and
Zhao 1996; Liang and Pulver 1996). Applications to
nonparametric linkage analysis (Olson and Wijsman the quantity (2) being evaluated at bO . The robustness

property of EE relies on the fact that consistent estimates1993; Olson 1994b) and segregation analysis (Lee et al.
1993; Stram et al. 1993; Whittemore and Gong 1994; of the parameters and of their variances are obtained

even if the dependency between familial phenotypes isZhao 1994; Zhao and Grove 1995; Lee and Stram 1996)
have also been proposed. not correctly specified. In other terms, when Var(yk) is

written as diag(Var[yki])1/2Rkdiag(Var[yki])1/2, where RkIn this paper, we consider an application of the EE
technique to the problem of association between mea- is a ‘‘working correlation matrix’’ specifying the correla-

tions between individuals of family k, the solutions ob-sured markers and phenotypes, either quantitative or
binary. The EE properties of robustness and efficiency tained by EE are robust to any misspecification of Rk.

This is particularly true when individuals within a familyhave been shown to be asymptotically valid, but less is
known about the technique’s behavior in small samples are taken to be independent; that is, when Rk is taken

as the identity matrix. However, the better that Rk speci-or when cluster sizes are unequal. We studied, through
simulations, the behavior of EE in a large range of practi- fied, the more efficient are the estimates bO and V(bO ). As

mentioned by Rotnizsky and Jewell (1990), misspecifi-cal situations, including small samples of families and
mixtures of related and unrelated individuals. cation of the working correlation matrix may have a

greater impact on the efficiency of the EE estimate when
cluster size is not constant, which is generally the caseMaterial and Methods
in family studies. Note that equation (1) is the score

EE equation under models of the partly exponential family
Consider a sample of K families with family k con- (Zhao et al. 1992b), including the multivariate normal

sisting of nk individuals. Let yt
k Å (yk1 , . . . , yknk

) (t distribution, provided that Var(yk) is correctly specified.
In this case, EE and ML parameter estimates are equiva-denotes ‘‘transposition’’) denote the vector of pheno-

types of the kth family, with expected mean mt
k Å (mk1 , lent. However, such equivalence for the variance-covari-

ance matrix holds only asymptotically (Park 1993).. . . , mknk
), and let xt

k Å (xk1 , . . . , xknk
) denote a p
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Application to Genotype-Phenotype Association Binary phenotype.—For a binary phenotype (e.g., a
disease), the link function ‘‘logit’’ is used; that is, E(y-In the following applications, the phenotype yki of the
kiÉxki) Å pki Å [exp(a / bxki)/[1 / exp(a / bxki), whereith individual in the kth family is assumed to result from
b Å (b1 ,b2) is the vector of association parameters, eb1a genotype effect measured at a diallelic locus A/a and
and eb2 being the odds ratios for disease associated withfrom an independent residual component eki, which can
genotypes. In that case, residual variances are those ofalso be the source of family resemblance. In the most
a Bernoulli variable; that is, var(eki) Å pO ki(1 0 pO ki)∀igeneral form, the genotype is a set of two indicator
Å 1, . . . , nk. The best way of modeling the associationvariables associated with the genotypes Aa and AA, re-
between a pair of binary responses is not obvious. Withspectively, with the genotype aa being taken as the refer-
pairwise correlations as originally proposed by Prenticeence. Under specific genetic models (additive, recessive,
(1988), interclass and intraclass working residual corre-or dominant), this set reduces to only one variable. The
lations were estimated byextension to a multiallelic locus or to several loci is

straightforward.
Quantitative phenotype.—For a quantitative pheno-

corr(eks, ekt) Å 1
K2

∑
K2

kÅ1

n01
ks n01

kttype, the link function ‘‘identity’’ is used to relate the
mean to genotype; that is, E(ykiÉxki) Å a / bxki, where
b Å (b1 ,b2) is the vector of association parameters. Note 1 ∑

nks

jÅ1

ekj√
pO kj(1 0 pO kj)

∑
nkt

mÅ1

ekm√
pO km(1 0 pO km)that b1 (or b2 , respectively) represents the mean differ-

ence of the trait, between Aa (or AA, respectively) and
aa subjects. The residual variances and the working re- and
sidual correlations based on the interclass and intraclass
pairwise correlations (Donner and Eliasziw 1991) are

corr(ekt, ekt) Å 1
K3

∑
K3

kÅ1

n01
kt (nkt 0 1)01

var(ekt) Å 1
K1

∑
K1

kÅ1

n01
kt ∑

nkt

jÅ1

e2
kj ,

1 ∑
nkt

jÅ1

∑
nkt

mÅ1
mxj

ekjekm√
pO kj(1 0 pO kj)pO km(1 0 pO km)

,

and

where s, t, K2 , and K3 are defined as above. Note that
corr(eks, ekt) Å � 1

K2
∑
K2

kÅ1

n01
ks n01

kt ∑
nks

jÅ1

ekj ∑
nkt

mÅ1

ekm�� in the binary situation there is no obvious ML method
for analyzing correlated data.

Simulated Data
√
var(eks)var(ekt) ,

Simulation studies were performed to study the per-
and formances of EE in terms of power, bias, and type I

error. In all simulations, the A-allele frequency was fixed
to .3. Each individual was assigned a genotype, undercorr(ekt, ekt) Å � 1

K3
∑
K3

kÅ1

n01
kt (nkt 0 1)01

Hardy-Weinberg laws (for founders) and Mendelian
transmission laws (for offspring). The genetic model was
considered to be strictly codominant; that is, b1 Å b2/21 ∑

nkt

jÅ1

∑
nkt

mÅ1
mxj

ekjekm��var(ekt) , Å b. For a quantitative phenotype, this model corre-
sponds to an additive model, b being the mean effect
associated with allele A, whereas, for a binary pheno-
type, this model corresponds to a multiplicative model,where s and t refer to a subclass of relatives (fathers,

mothers, sons, daughters, grandfathers, . . .); nks (or eb being the odds ratio associated with allele A. In the
quantitative situation, the vector of residual familialnkt, respectively) is the number of individuals within sub-

class s (or t, respectively) in family k; and K1 , K2 , and phenotypes was generated from a standardized multi-
variate normal distribution. Spouses were uncorrelated,K3 are the number of families over which these parame-

ters are estimated. In the case of a fixed family structure and the correlation between parent and offspring was
identical to the correlation between sibs. In the binary(e.g., nuclear families of equal size), K1 Å K2 Å K3 Å K.

In this special case, the interclass and intraclass pairwise situation, the trait (e.g., a disease) was generated from
a truncated underlying multinormal distribution withestimators are identical to the ML estimators under the

multivariate normal distribution. This is no longer true the same family correlation structure as in the quantita-
tive situation. An individual was considered as affectedwhen the cluster size varies or when the distribution is

not normal. if his or her phenotype value was greater than a given
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threshold, this latter being a function of the prevalence
of the disease in the population (fixed to .25), the allele
frequency in unaffected individuals (fixed to .3), and the
allelic odds ratio eb.

We first considered samples composed of nuclear fam-
ilies of equal size (fixed clusters). Then we considered
samples composed of mixtures of clusters of different
type (nuclear families of varying size, sibships, and unre-
lated individuals). Unrelated individuals, in that case,
are considered as families of size 1.

Analysis Methods
For implementing the EE method, we developed our

own program in C language. The performances of the
EE method were assessed in terms of power, relative
bias (mean of the parameter estimate minus the true
value divided by the true value), coverage probability
(probability that the observed 95% confidence interval
includes the true value b), mean square error of the
parameter, and type I error.

In simulations performed on fixed clusters, we also
compared the power and type I error of the EE test with
those of the conventional test of association, used for
unrelated individuals, which does not take into account
the family structure. This test will be referred to as the
‘‘naive’’ test. We also analyzed the data by using a con-
ventional ML method based on a measured genotype
analysis (Boerwinkle et al. 1986). For this purpose, we
used, for quantitative phenotype, our own program,
which is based on a regressive model assuming that the
penetrance function within a family is the multinormal
density function (for a detailed description of the model,
see Georges et al. 1996). For the binary phenotype, we
used the REGRESS program (Demenais and Lathrop

Figure 1 Fixed clusters: power of the different tests to detect1994), in which the penetrance is modeled by a logistic
association, according to marker effect and sibship size (mean power

function depending on the genotype-dependent baseline over the four different values of residual family correlation). A, Quan-
risk and on residual family dependencies. These residual titative phenotype. B, Binary phenotype. The horizontal line indicates

power of .90, which would be expected if unrelated individuals hadfamily dependencies are modeled by specifying a regres-
been sampled. N Å total number of individuals.sion relationship between a person’s phenotype, the phe-

notypes of antecedents, and the genotype.
All EE simulations were conducted on 1,000 repli-

sponding to a proportion of variance explained by thecates. Because the ML methods are extremely comput-
marker (h2) of 1.6%, 3.6%, and 6.3%, respectively. Theing-time demanding, the corresponding simulations
h2 value first determined the total number of individualswere conducted on only 200 replicates. The null hypoth-
to be sampled if these individuals were unrelated; foresis b Å 0 was tested in EE analyses by a Wald test using
example, for h2 Å 1.6%, the required number of unre-the statistic bO 2/var(bO ) and in ML analyses by a likeli-
lated individuals would be 626, in order to detect thehood-ratio test. In both cases, the statistics follow, under
marker effect with 90% power at a nominal level of .05.the null hypothesis, a x2 distribution with 1 df. The
To examine the influence of clustering, this total numbersignificance level was taken to be .05. The following
was then divided successively into K families of sibshipsection presents a summary of the results, but all detailed
size 1 (K Å 209), sibship size 2 (K Å 157), and sibshipresults are available on request.
size 4 (K Å 104). For h2 Å 3.6% and 6.3%, the numbers

Results of families are shown in figure 1A. The residual family
Fixed Clusters: Simulations with b x 0 correlation was successively fixed to .0, .1, .3, and .5.

The power of the EE test was first compared with thatQuantitative phenotype.—Three different values of
b—.2, .3, and .4—were successively considered, corre- of the naive and ML tests. A mean power was calculated
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Table 1

Quantitative Trait, Fixed Clusters: Power, Relative Bias, and Coverage Probability of EE Estimate of Association Parameter in Small Samples

SIBSHIP SIZE 1, K Å 52 SIBSHIP SIZE 2, K Å 39 SIBSHIP SIZE 4, K Å 26

Coverage Coverage Coverage
RESIDUAL Power Bias Probability Power Bias Probability Power Bias Probability
CORRELATION (%) (%) (%)

.0 .910 01.0 .920 .912 0.8 .922 .899 .7 .887

.1 .891 0.6 .928 .888 1.5 .906 .862 0.1 .905

.3 .844 02.5 .925 .872 .8 .917 .856 .0 .911

.5 .897 0.4 .924 .900 0.4 .912 .903 .0 .918

NOTE.—Data are for nuclear families of equal size; h2 Å 6.3%; total number of individuals is 156, giving a 90% power in a sample of
unrelated individuals; and nominal level a Å .05.

over the four different values of residual family correla- 4, respectively (see fig. 1B). The different sample sizes
were chosen to be roughly similar to those of the simula-tion (fig. 1A). In all cases, the power of the ML and the

EE tests was close to .90, the expected power if unrelated tions for a quantitative trait. Again, four different values
of the residual family correlation (0, .1, .3, and .5) inindividuals, rather than families, had been sampled. This

first result indicates that sampling relatives yields only a the underlying liability distribution were considered.
The effect of sibship size on the power of the EE, ML,slight loss of power, compared with the use of unrelated

individuals, provided that the dependency between indi- and naive tests is shown in figure 1B. For the three
tests, the power decreased with increasing sibship size,viduals is correctly specified. The power of the two meth-

ods was little influenced by the extent of clustering— whatever the sample size. This result was at variance
with that of the quantitative case, in which the powerthat is, the sibship size—even when the number of fami-

lies was relatively small (K õ 50). As expected, ignoring of the EE and ML tests seemed rather insensitive to
the degree of clustering. The power also decreased withthe within-family correlation (the naive test) induced a

loss of power that dramatically increased with the extent increasing correlation, the decrease appearing more pro-
nounced in larger sibships (data not shown). It shouldof clustering. Whatever the sibship size, the power of

the EE and ML tests followed a U-shaped curve with a be stressed that, unlike the quantitative case, in which
data were analyzed under the true model of generation,minimum power observed for a correlation of .3. By

contrast, the loss of power of the naive test increased in the binary case the phenotype was generated from a
truncated continuous variable but was analyzed as awith the magnitude of the within-cluster correlation

(data not shown). dichotomous variable, which probably induced a loss of
power. Moreover, whereas in the quantitative situationThe bias of the EE estimate was never ú3% of the

true value of b. The coverage probability was close to all families contribute to estimation, the most informa-
tive families for a binary trait are those with severalthe designed value of .95, in large samples. In small

samples (K õ 50), the coverage probability was lowered, affected members, whereas families with no affected
member poorly contribute to the estimation of b. Last,although the power and the relative bias remained

within acceptable ranges (table 1). Actually, in small the way of modeling the dependency between binary
observations (by pairwise correlations or by odds ratios)samples, the EE variance of the parameter tended to be

underestimated, compared with the mean square error might affect the efficiency of estimation in both ML and
EE analyses. Unlike the quantitative case, the naive testthat provides an estimate of the true variance. As a con-

sequence, the confidence interval was smaller than it appeared to have a power identical to that of the EE test,
in all situations, but these results should be tempered byshould be.

Binary phenotype.—When the frequency of the A al- the fact that the type I error of the naive test was largely
inflated (see below).lele was set to .3 in unaffected individuals, three different

values of the allelic odds ratio—1.6, 2.0, and 2.5— In large samples, as for a quantitative trait, the EE
estimate behaves well in terms of bias and coveragewere successively considered, corresponding to an A-

allele frequency, in affected individuals, of .406, .461, probability (data not shown). In small samples (K õ 50),
the bias of the EE estimate was slightly larger than thatand .517, respectively. In a manner similar to that in

the quantitative situation, the allelic odds ratio deter- in the quantitative situation, and the coverage probabil-
ity again was lower than the designed probability of .95mined the total number of unrelated individuals and the

subsequent number of families of sibship size 1, 2, and (table 2).
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Table 2

Binary Trait, Fixed Clusters: Power, Relative Bias, and Coverage Probability of EE Estimate of Association Parameter in Small Samples

SIBSHIP SIZE 1, K Å 47 SIBSHIP SIZE 2, K Å 35 SIBSHIP SIZE 4, K Å 24

Coverage Coverage Coverage
RESIDUAL Power Bias Probability Power Bias Probability Power Bias Probability
CORRELATION (%) (%) (%)

.0 .889 2.2 .941 .882 2.8 .924 .871 0.8 .919

.1 .877 3.8 .929 .851 1.7 .919 .843 3.3 .912

.3 .854 2.5 .931 .842 3.8 .932 .801 1.7 .911

.5 .860 4.6 .926 .810 2.3 .925 .783 2.7 .919

NOTE.—Data are for nuclear families of equal size; allelic odds ratio associated with the marker is 2.5; total number of individuals is 141,
giving a 90% power in a sample of unrelated individuals; and nominal level a Å .05.

Fixed Clusters: Simulations with b Å 0
The total sample size was fixed successively to 600,

300, and 120, in order to be of the same order of magni-
tude as that considered in the power simulations. The
number of families of sibship size 1, 2, and 4 was de-
duced from this total number. The residual family corre-
lations varied over the same values as have been reported
above.

Quantitative phenotype.—As for power, the type I
error of the three tests was compared, for varying sibship
sizes, the mean error being calculated over the four dif-
ferent within-family correlations (fig. 2A). The observed
type I error of the ML test was close to the nominal
value of .05. By contrast, as already observed for power,
the asymptotic properties of the EE method did not seem
to hold for small samples, in which the observed type I
error was substantially inflated. For K £ 30, it was even
ú.10. This inflation was due to an underestimation of
the EE estimate of the variance, an underestimation al-
ready observed in the simulations with b x 0 for small
samples. Looking more deeply into our simulation re-
sults revealed that an underestimation of the residual
correlations for small samples might explain this infla-
tion, as already reported by Hendricks et al. (1996). As
expected, the naive test yielded a type I–error inflation
that increased both with the sibship size and with the
within-family correlation. However, for low within-
family correlation, this inflation appeared to be smaller
than that for the EE test, especially in small samples
(data not shown). Actually, in small samples, the advan-
tage of using a presumably more accurate working cor-
relation matrix might be offset by the need to estimate
more nuisance parameters, which may create finite-sam-
ple instability (Rotnitzky and Jewell 1990; Liang and
Pulver 1996).

Figure 2 Fixed clusters: observed type I error of the differentBinary phenotype.—The behaviors of the three tests
tests, according to number of families and sibship size (mean power

were quite similar to those observed in the quantitative over the four different values of residual family correlation). A, Quan-
simulations (fig. 2B). However, the inflation of the type titative phenotype. B, Binary phenotype. The horizontal line indicates

the nominal type I error, .05. N Å total number of individuals.I error in the EE test was lower than that in the quantita-
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Table 3

Quantitative Phenotype, Varying Clusters: Power, Relative Bias, and Coverage Probability of EE Estimate, According to Sample Structure

h2 Å 1.6% (N Å 626) h2 Å 3.6% (N Å 279) h2 Å 6.3% (N Å 156)

Coverage Coverage Coverage
Power Bias Probability Power Bias Probability Power Bias Probability

RESIDUAL CORRELATION (%) (%) (%)

K Å 144 K Å 64 K Å 36

Structure 1 (NF1 25%,
NF2 25%, NF4 50%):

.1 .839 0.4 .941 .848 2.0 .921 .833 02.1 .878

.5 .851 02.0 .923 .831 2.9 .901 .755 04.6 .908

K Å 271 K Å 121 K Å 68

Structure 2 (NF1 40%, SP 60%):
.1 .822 .2 .942 .892 .2 .938 .889 1.2 .916
.5 .903 .2 .944 .885 0.7 .923 .846 01.3 .878

K Å 250 K Å 112 K Å 62

Structure 3 (NF2 40%, SP 60%):
.1 .866 .6 .913 .860 1.7 .887 .855 .3 .846
.5 .853 1.4 .899 .831 0.7 .894 .826 1.2 .849

K Å 501 K Å 243 K Å 125

Structure 4 (SP 40%, UI 60%):
.1 .886 1.4 .950 .897 0.08 .941 .880 0.2 .923
.5 .893 .2 .919 .893 0.3 .937 .876 02.1 .934

NOTE.—N Å total number of individuals; K Å number of clusters; NFi Å nuclear families of sibship size i ; SP Å sib pairs; and UI Å unrelated
individuals.

tive case. This might be explained by the fact that nui- By contrast, in samples composed of clusters more
heterogeneous in size (structures 1 and 3), a slightsance parameters to be estimated are fewer, since the

residual variance for a binary trait is a bijective function loss of power of the EE test was observed, especially
for high residual correlation in small samples. Look-of the mean whereas it is not so for a quantitative trait.
ing more deeply into the results suggested that this

Varying Clusters: Simulations with b x 0 loss of power was due to a higher mean square error
For both quantitative and binary phenotypes, four of the association parameter than was seen in the

different sample structures were considered: (1) a mix- fixed structure. As for fixed clusters, the bias was not
ture of nuclear families with different sibship sizes (1, ú3%, with one exception (K Å 36). Again, a decrease
2, and 4); (2) a mixture of sib pairs and nuclear families of the coverage probability was observed in smaller
with sibship size 1; (3) a mixture of sib pairs and nuclear samples. For comparable sample sizes, the decrease
families with sibship size 2; and (4) a mixture of sib was more marked in small samples composed of un-
pairs and unrelated individuals. The proportion of indi- equal clusters than in small samples composed of
viduals in each type of cluster is given in tables 3–5. All equal clusters. The lower coverage probabilities were
simulations were performed for two contrasted values observed in structure 3, composed of a mixture of
of the residual family correlation, .1 and .5. The total clusters of size 2 and 4.
sample sizes considered were the same as for the fixed Binary phenotype.—Quite similar results were ob-
sample structure. served for a binary phenotype (table 4). The loss of

Quantitative phenotype.—Detailed results are given power of the EE test was negligible when the clusters
in table 3. When the sample was composed of clusters were similar in size (structures 2 and 4) but increased
similar in size (structures 2 and 4), the power was with the heterogeneity of cluster sizes, especially for high

residual correlation. As for the quantitative phenotype,close to that observed for a fixed sample structure.
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Table 4

Binary Phenotype, Varying Clusters: Power, Relative Bias, and Coverage Probability of EE Estimate According to Sample Structure

ALLELIC ODDS RATIO 1.6 ALLELIC ODDS RATIO 2.0 ALLELIC ODDS RATIO 2.5
(N Å 559) (N Å 251) (N Å 141)

Coverage Coverage Coverage
Power Bias Probability Power Bias Probability Power Bias Probability

RESIDUAL CORRELATION (%) (%) (%)

K Å 128 K Å 58 K Å 32

Structure 1 (NF1 25%,
NF2 25%, NF4 50%):

.1 .860 .4 .933 .861 1.6 .927 .839 .4 .936

.5 .856 2.3 .934 .827 4.7 .915 .797 .8 .928

K Å 241 K Å 109 K Å 61

Structure 2 (NF1 40%, SP 60%):
.1 .895 .4 .952 .859 0.2 .938 .849 2.4 .943
.5 .867 .2 .944 .864 .8 .945 .838 3.4 .943

K Å 224 K Å 100 K Å 57

Structure 3 (NF2 40%, SP 60%):
.1 .866 .8 .910 .839 0.1 .898 .854 3.8 .884
.5 .822 0.3 .914 .814 1.2 .895 .825 4.1 .912

K Å 447 K Å 201 K Å 114

Structure 4 (SP 40%, UI 60%):
.1 .879 0.3 .938 .907 2.9 .939 .866 2.4 .931
.5 .888 .3 .952 .887 .7 .943 .865 3.4 .939

NOTE.—Abbreviations are as in table 3.

the lower coverage probabilities were observed in struc- als. It is important to recognize that, although dealing
with family data, the EE application proposed here doesture 3.
not test for linkage but only for association and then

Varying Clusters: Simulations with b Å 0 does not overcome the risk of spurious association due
to uncontrolled stratification of the population, one ofQuantitative and binary phenotypes.—Simulations
the main pitfalls of association studies.were performed for residual correlations of .1 and .5,

The EE technique offers several advantages over MLbut results are reported in table 5 only for correlation
methods, including flexibility of the model (it is easilyof .1, since similar findings were obtained for correlation
extended to several markers and gene-environment in-of .5. For large samples, in almost all situations, except
teractions), computational rapidity, and the possibilityfor the case in which samples were composed of clusters
of handling incomplete family data or a mixture ofof size 2 and 4 (structure 3), the observed type I error
related and unrelated individuals. Another major ad-of the EE test only slightly exceeded the nominal value
vantage of EE is that it does not require any assump-of .05. As already observed in the case of fixed clusters,
tion regarding the joint family distribution. However,the type I error was substantially inflated in small sam-
it must be stressed again that, when a specific distribu-ples, except in structure 4, probably because the sample
tion is assumed, the score EE under the ML method iswas mainly composed of unrelated individuals.
a particular form of EE, in which the covariance matrix
is fully parametrized. By contrast, the EE method pro-Discussion
posed here could be viewed as an ‘‘empirical’’ EE

In this paper, we have been interested in the applica- method, in the sense that the covariance matrix is an
tion of the EE technique to the problem of association empirical one. From this perspective, the comparison

between the EE and ML methods that is performed inbetween genetic markers and a trait in related individu-
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Table 5

Quantitative and Binary Phenotypes, Varying Clusters: Observed Type I Error of EE Test,
According to Sample Structure and Sample Size

N Å 600 N Å 300 N Å 120

K Å 138 K Å 69 K Å 28

Structure 1 (NF1 25%, NF2 25%, NF4 50%):
Quantitative .061 .064 .127
Binary .056 .066 .093

K Å 260 K Å 130 K Å 52

Structure 2 (NF1 40%, SP 60%):
Quantitative .062 .068 .117
Binary .055 .059 .058

K Å 240 K Å 120 K Å 48

Structure 3 (NF2 40%, SP 60%):
Quantitative .101 .109 .161
Binary .085 .103 .103

K Å 480 K Å 240 K Å 96

Structure 4 (SP 40%, UI 60%):
Quantitative .066 .064 .060
Binary .042 .044 .054

NOTE.—Nominal level a Å .05; and residual family correlation is .1. Abbreviations are as in table 3.

the present paper is a comparison between two differ- increased, but this phenomenon was also observed for
the ML test. Several reasons might explain this result.ent forms of EE.

Several conclusions can be made from our simula- First, as already stressed above, the way of modeling
the dependency between two binary responses is nottions. For a quantitative trait and clusters of equal size,

the power of the EE test based on a completely specified obvious. In ML analyses, we used a regressive approach
that models the family dependencies, by regressing acorrelation matrix was comparable to that of the ML

test and was similar to the power expected in a sample of person’s phenotype on those of preceding relatives (De-
menais 1991); but other formulations of the familialunrelated individuals. The mean bias of the association

parameter was negligible. In large samples, the full effi- dependency have been proposed (Bonney 1992; Abel et
al. 1993). In EE analyses, we chose to model the pairwiseciency of the EE estimator was thus demonstrated when

normality holds and asymptotic conditions are valid (Li- association in terms of marginal correlations, as origi-
nally proposed by Prentice (1988); but other authorsang and Zeger 1986; Zhao et al. 1992b). However, in

small samples (õ50 families), the variance of the EE have proposed use of the marginal odds ratios, which
have desirable properties and are easier to interpret thanassociation parameter tended to be underestimated. This

underestimation led to a decrease of the coverage proba- the correlation coefficients (Lipsitz et al. 1991; Carey et
al. 1993; Lipsitz and Fitzmaurice 1996). Second, thebility for b x 0 and to an inflation of the type I error

for b Å 0, as already noted by several authors (Emrich efficiency of regression estimates has been shown to de-
pend on the covariate distribution and to be quite sensi-and Piedmonte 1992; Olson 1994b; Hendricks et al.

1996). The inflation of the type I error could be quite tive to the between- and within-cluster variation of the
covariate (Mancl and Leroux 1996). Actually, in thesubstantial in the presence of a strong clustering effect.

The small sample size might explain the relatively high presence of a strong clustering effect, the genotype distri-
bution is expected to be quite different between families.rate of false-positive associations reported by Bull et al.

(1995) when they analyzed the Genetic Analysis Work- Last, both the ML and EE methods assume a correct
specification of the mean vector of phenotypes. Using ashop 9 data on 23 extended families.

For a binary trait and clusters of equal size, the power logistic parametrization for a binary variable obtained
from a truncated liability distribution is a priori notof the EE test tended to decrease as within-cluster effect
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Boerwinkle E, Chakraborty R, Sing CF (1986) The use ofcorrect, and this could also affect the efficiency. As al-
measured genotype information in the analysis of quantita-ready observed for a quantitative trait, the variance of
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